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We wish to report the first successful measurement of the activation 

parameters for hindered rotation about the C-N bond in a triallcylated 
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Recent attempts to detect slow rotation in trialkylamidines by magnetic 

resonance (nmr) methods have been unsuccessful. (%4a) This lack of success may 

be.a.consequence of two phenomena: either the rotational barrier for a torsional 

process such as Ia,Ib is too rapid to be measured by the usual mat techniques 

fomamidine, nawely, N'-r-butyl-N,N-dimethylfomamidine 
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for exchange between two sites, or the magnetic non-equivalence requirement 

for the structurally differentbl-methyl groups may be unfavorable. In order to 

make a definitive study of I, we took advantage of the unusual solvent 

properties of pyridine-d5 and toluene-dS. By analogy with the use of benzene 

in other systemst4), it was anticipated that these solvents would provide a 

significant magnetic non-equivalence of the N-methyl groups while permitting 

nmr measurements at sufficiently low temperatures to analyze the process 

Ia+Ib. 
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The 60 MD spectrum of the N-methyl region of I in pyridine-d5, as a 

function of temperature, is shown in Figure 1. As can be seen in the Figure, 

the N-methyl signal broadens and separates into two peaks upon lowering the 

temperature. This observation can be reasonably attributed to a kinetically 

slow rate of rotation about the C-N bond of I on the nmr time scale. (5) A 

similar temperature dependence was observed with toluene-% solvent. 

Analysis of the temperature-dependent methyl signal was made using 

computer programs for total line-shape analysis as outlined recently by 

Gutowsky, et. al. (6) This method represents a distinct improvement in spectral 

analysis over earlier steady-state nmr approaches (798). In both solvents the 

chemical shift, A, between the two N-methyl signals in the absence of exchange 

was found to be temperature dependent. A plot of A vs. temperature was 

approximately linear, and extrapolation provided A values used in the fast 

exchange portions of the nmr analysis. The kinetic data are shown in Table I 

and the activation parameters computed by the usual method are given in Table II. 

A n 

Figure 1. The experimentally observed N-CH3 signals for 12% solution of 
N'-t-butyl-N,N-dimethylformamidine in pyridine-d5. 
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The observed activation parameter8 for the procelre la+Ib merit some 

diecuseion. Both calculated free energies of activation are less than that 

for any other accurately determined barriers in moleculelr of the type 

RC(=X)-NMe2 including amides, (397-9) thioamidee(3S10) and N-aryl-N,N-dixethyl- 

formamidinee. (4) This observation implies that the double bond character in 

the C-N bond arising from electron delocalixation (see contributing structure 

Ic) is relatively less than in the other systems. The small entropies of 

activation compare favorably with the valuea of -1.6 eu for a similar process 

in N,N-dimethylcarbamoyl chloride; (10) they do not indicate any unusual 

solvent-solute interaction complex a8 suggested previously (4) 

Table I. Kinetic Data for the Exchange Process, IaeIb 

Toluene-d8 Pyridine-d5 

T'K k 

248.7 125. 
241.5 78.9 
238.5 42.8 
233.0 23.4 
227.5 13.9 
225.5 7.3 
220.7 5.2 

T°K 
247.5 
244.0 
241.5 
236.0 
235.5 
233.0 
230.5 
229.5 
225.0 
223.5 
221.0 
216.0 
212.0 

for a different 

b 
111. 
64.6 
52.7 
44.9 
31.2 
37.5 
15.9 
15.5 
9.0 
7.2 
6.4 

2':: 

Table II. Activation Parameters for Hindered Rotation 
in N'-t-Butyl-N,N-dimethylformamidine 

Ra 
P 

AG AH* ASP 
Solvent kcallmole lccal/mole kcal/mole eu 

Toluene-d8 13.0 + 0.7 11.9 + 0.6 12.4 + 0.7 1.6 -f 2.8 

Pyridine-d5 11.4 + 0.7 12.4 5 0.8 10.8 + 0.7 -5.4 + 2.7 
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benzene-amidine system. Finally, the frequency factors (log A = 12.5 in 

pyridine-d5 and 13.6 in toluene-d8) are in excellent agreement with other 

accurately determined values (728910) and serve to justify confidence in the 

present results. 
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